Skip to main content
 首页 » 生活百科

6种方法来因式分解二次多项式(二次方程)

本文将教你如何因式分解二次多项式。一个多项式含有一个变量(x),x有特定的次数,多项式还有各种其他的变量和常数。要因式分解一个二次多项式成多个多项式因子相乘的形式,你的数学水平得达到代数I以上,否则不太容易理解本方法的原理。 本文中都用到的标准形式的二次多项式:ax2 + bx + c = 0 写下表达式。以次数高低排列,如果有最大公因数则提出来:6 + 6x2 + 13x,6x2 + 13x + 6

1、写下表达式。

以次数高低排列,如果有最大公因数则提出来:6 + 6x2 + 13x,6x2 + 13x + 6

2用以下方法之一,得出因式分解的结果:(2x + 3)(3x + 2)

3、用FOIL(首项相乘、外项相乘、内向相乘、次项相乘,这是展开多项式相乘的一种步骤方法)分解,并合并同类项:(2x + 3)(3x + 2),6x2 + 4x + 9x + 6,6x2 + 13x + 6。

方法 1 :试错法

若你的多项式十分简单,可以自己来发现因数。注意:用这个方法,可能不能因式分解更复杂的三项式了。

例子: 3x2 + 2x - 8

1、把a、c的因数写出来:a = 3 因数有:

1 和 3,c = -8 因数: 2 和 4 和 1 和 8

2写两对括号,留点空白:( x )( x )

3把a可能的一对因数写在x前:本例子中只有一对因数 (3x )(1x )

4在x项后面分别写上成对的c的因数,先试试 (3x 8)(x 1)

5、决定x项和常数项的符号。

以下是方法:如果ax2 + bx + c 则 (x + h)(x + k),如果 ax2 - bx - c 或 ax2 + bx - c 则 (x - h)(x + k)。如果 ax2 - bx + c 则 (x - h)(x - k)。本例子中是 3x2 + 2x - 8 ,因此 (x - h)(x + k)是答案的形式,然后试试: (3x + 8)(x - 1)

6、把两个括号展开,如果中间项不对,则这种化简不对(c的因数选错了)。

(3x + 8)(x - 1),3x2 - 3x + 8x - 8,3x2 + 5x - 8 ≠ 3x2 + 2x - 8

7、如果必要,则换掉因数。

本例中我们试试2和4这对: (3x + 2)(x - 4)

  • c 现在是-8。
  • 但是外项和内项积分别是-12x 和 2x, 合并不成+2x。

8、如果必要的话就调转顺序。

我们试试把2、4换个位置。 (3x + 4)(x - 2)

  • c 还是对的。
  • 外项积和内项积是-6x 和 4x, 则这两个数的和同2x正好符号相反

9、然后再确认一下符号正负。

顺序是没错的,现在把符号倒过来: (3x - 4)(x + 2)

  • c 还是对的。
  • 外项积和内项积现在6x 和 -4x。 加起来等于2x ,这次就对了。

方法 2 :分解法

不喜欢猜的方法, 可以试试这个。

例子: 6x2 + 13x + 6

1把a、c乘起来,本例中是:6?6 = 36

2找出一对数字,乘起来是36,加起来又是b(13):4?9 = 36 4 + 9 = 13

3、把两个数字设为 k 和 h (顺序随意):

ax2 + kx + hx + c,6x2 + 4x + 9x + 6

4、整理成组,因式分解。

整理一下方程,使得可以提出最大公因式((3x+2)),然后合并同类项,得到因式分解结果。6x2 + 4x + 9x + 6,2x(3x + 2) + 3(3x + 2),(2x + 3)(3x + 2)

方法 3 :三重方法

本方法很像分解法,不过更简单

例子: 8x2 + 10x + 2

1、将a、c两项相乘。

8?2 = 16

2、找出两个数字,相乘是16,相加又是b(10)。

2?8 = 16 8 + 2 = 10

3将两个数( h 、 k)代入这个方程:(ax + h)(ax + k)---------------------- a(8x + 8)(8x + 2)---------------------- 8(如图)

4、看看哪一个括号项可以被a整除,并且商是偶数。

a {本例中为(8x + 8)}。用a除以这个数,让另一项保持原样(8x + 8)(8x + 2)---------------------- 8,答案:(x + 1)(8x + 2)

5如果两括号有最大公因式,提出来:(x + 1)(8x + 2),2(x + 1)(4x + 1)

方法 [s=18]4 :两个平方之差

1[/s]、如果需要,则提出最大公因数。

27x2 - 12,3(9x2 - 4)

2、看看方程是否是两个平方之差。

一定要有两项,否则不能平均分解这个方程。√(9x2) = 3x , √(4) = 2 (注意这里省去了负数根。)

3把“a”、“c”从你的等式中代入下列公式:(√(a) + √(c))(√(a) - √(c))3[(√(9x2) + √(4))(√(9x2) - √(4))]3[(3x + 2)(3x - 2)]

方法 [s=18]5 :使用二次公式

上述方法都不行,则用二次公式

例如:x2 + 4x + 1

1将对应量代入本方程:x = -b ± √(b2 - 4ac) --------------------- 2a,x = -4 ± √(42 - 4?1?1) ----------------------- 2?1(如图)

2[/s]、解出x。

得到两个x,x= -4 ± √(16 - 4) ------------------ 2x = -4 ± √(12) -------------- 2x = -4 ± √(4?3) -------------- 2x = -4 ± 2√(3) -------------- 2x = -2 ± √(3),x = -2 + √(3) 或 x = -2 - √(3)(如图)

3把x值(h 、k) 代入方程 (x - h)(x - k),(x - (-2 + √(3))(x - (-2 - √(3)),(x + 2 + √(3))(x + 2 - √(3))

方法 [s=18]6 :用计算器

这些步骤适合TI图形计算器,在标准考试中尤其好用。

1输入[Y = ] :y = x2 ? x ? 2

2[/s]、按下 [GRAPH]作图。

3、找到和x 轴相交点得到(-1, 0), (2 , 0),x = -1, x = 2

  • 如果看不到,则按下[2nd] -[TRACE], 按下 [2] 或选择“0”。移到交点之左以后按下[ENTER], 移到交点之右按下[ENTER], 移到尽量接近和x轴相交的点旁边,按下 [ENTER],计算器就会自动算出该点的横坐标。对另一个交点也重复此步骤。

4、把x值(h 和 k)代入本公式: (x - h)(x - k),(x - (-1))(x - 2),整理为(x + 1)(x + (-2)) 表示出两个交点来。

利用箱型法(可视解)

本网站有解释: http://www.purplemath.com/modules/factquad3.htm

视频说明: http://www.youtube.com/watch?v=bq1Iw1w1Bgo

小提示

  • 若用二次公式因式分解了一个多项式,其中含有根数,可能需要将x换成分数来检查该解是否正确。
  • 如果一个项没有系数,则系数是1。x2 = 1x2
  • 如果有 TI-84 计算器 (可画图) ,则有一个叫做SOLVER的程序可以解二次方程,这个程序还可以解任何其他次数的多项式。
  • 如果一个项不存在,则它的系数是0。有时把0项写出来会比较方便,比如x2 + 6 = x2 + 0x + 6
  • 在熟悉试错法前,先把要试的因数写下来,熟练了以后再在脑子中运算。

注意

  • 如果你在数学课中学到了这个概念,要注意老师建议用什么方式,就尽量不要用你喜欢的别的方式。因为老师可能会让你在考试中用特定的一种方法来解,或者不让你用图画计算器来解。

你需要准备

  • 铅笔
  • 二次方程,或叫二次多项式
  • 画图计算器(可选)
评论列表暂无评论
发表评论